800.657.1494

Testing, Debugging & Securing Al-Assisted Code

Course #: AI-302 Duration: 2 days

Prerequisites

Completion of Al Foundations for Software Developers and Professional Software Development with GitHub Copilot, or equivalent
experience using Al-assisted coding tools in professional software development workflows.

Details

Al-assisted development accelerates code creation—but it also introduces new risks related to correctness, security, and long-term
maintainability. This course focuses on the counter-skills developers need when working with Al-generated code: rigorous testing,
disciplined debugging, and proactive security review.

Participants learn how to evaluate, test, debug, and secure code they did not write line-by-line, how to avoid false confidence from Al-
generated tests and fixes, and how to maintain professional engineering standards in Al-augmented development environments.

After attending this course, students should be able to:

Identify common defects and risks in Al-generated code

Design effective tests for Al-assisted implementations

Debug Al-generated logic systematically and confidently

Recognize security vulnerabilities introduced by Al tools

Apply professional judgment to determine when Al output is safe to use

This course is designed for software developers and technical leads responsible for maintaining code quality, reliability, and security in
environments where Al-assisted coding tools are in active use.

Software Needed

Participants must have a laptop or desktop computer (Windows, macOS, or Linux) with a modern code editor or IDE, reliable internet
access, and a working local development environment for at least one commonly used programming language in their organization (for
example, Python, JavaScript/TypeScript, Java, or C#). The environment must support running unit tests, stepping through code with a
debugger, and installing dependencies (package manager access). Git and command-line access are required. If the organization uses Al-
assisted coding tools (such as GitHub Copilot), participants should have access available for exercises, though the course can be
completed using provided examples and standard tooling, All work should comply with organizational security, privacy, and confidentiality
requirements.

Outline
Testing, Debugging & Securing Al-Assisted Code

¢ Why Al-Assisted Code Requires Different Quality Controls
o How AI changes defect patterns and failure modes
o Why “looks correct” is more dangerous than obvious bugs

https://www.logicalimagination.com
https://logicalimagination.com/courses/testing,-debugging-&-securing-ai-assisted-code

o The illusion of confidence in Al-generated output
o Shifting responsibility in Al-augmented development

Evaluating AI-Generated Code

Reading Al-generated code critically

Identifying hidden assumptions and missing constraints
Recognizing over-generalized or incomplete logic
Knowing when to refactor vs. rewrite

o O o o

Testing Al-Assisted Code

o Why Al-generated code needs more testing, not less
Writing unit tests for Al-generated implementations
Designing tests for edge cases and failure scenarios
Avoiding shallow or misleading test coverage

o O o

Al-Generated Tests: Benefits and Risks
o When Al-generated tests are useful
o Common gaps in Al-generated test suites
o False confidence from passing tests
o Improving Al-generated tests through human review

Debugging Code You Didn’t Write
o Debugging strategies for unfamiliar logic
o Tracing behavior back to incorrect assumptions
o Identifying subtle behavioral regressions
o Using Al tools to assist debugging responsibly

Fix-Forward Workflows
o Using tests to drive corrections
o Avoiding infinite fix-prompt-fix cycles
o Ensuring fixes don’t introduce new defects
o Maintaining clarity and intent during iteration

Security Risks in Al-Assisted Development
Common insecure patterns introduced by Al
Input validation and injection vulnerabilities
Authentication and authorization mistakes
Dependency and configuration risks

Secure Review of AI-Generated Code
o Treating Al output as untrusted input
o Incorporating security review into workflows
o Knowing when human security expertise is required
o Reducing risk without blocking productivity

O O O o

Licensing, Compliance, and IP Considerations
o Understanding licensing risks in Al-generated code
o Organizational policies and acceptable use
o Documenting Al assistance where required
o Aligning with legal and compliance expectations

Maintaining Quality at Scale

o Preventing Al-accelerated technical debt
Establishing quality standards for Al-assisted code
Supporting consistent practices across teams

Measuring quality alongside productivity

o O o

	Testing, Debugging & Securing AI-Assisted Code
	Prerequisites
	Details
	Software Needed
	Outline

