800.657.1494

Professional Software Development with GitHub Copilot

Course #: AI-301 Duration: 4 days

Prerequisites

Completion of Al Foundations for Software Developers or equivalent understanding of how Al-generated code behaves. No prior
experience with GitHub Copilot is required.

Details

This course builds on foundational understanding of Al-generated code and focuses on accelerating professional software development
workflows using GitHub Copilot. This hands-on, advanced course teaches professional software developers how to use GitHub Copilot
as a true Al pair programimer, not just an autocomplete tool. Participants learn how to integrate Copilot into real-world development
workflows, including design, refactoring, debugging, testing, documentation, and CI/CD pipelines.

Rather than focusing on isolated features, this course emphasizes judgment, context management, and production-ready usage.
Developers learn how Copilot reasons about code, how to guide it effectively across files and repositories, and how to safely collaborate
with Al in complex, real-world systens.

The course also addresses enterprise concerns such as security, compliance, intellectual property, and team standards, helping
organizations adopt Copilot responsibly while improving development velocity, code quality, and maintainability.

By the end of'the course, developers will be able to confidently use Copilot as a productivity multiplier while maintaining ownership,
architectural integrity, and engineering discipline.

After attending this course, students should be able to:

Explain how GitHub Copilot works, including its capabilities, limitations, and appropriate use cases

Use Copilot Chat and IDE integrations to reason about existing codebases, generate solutions, and accelerate development tasks
Apply context-driven techniques to improve Copilot’s accuracy and relevance across multi-file projects

Use Copilot to assist with refactoring, debugging, test generation, and documentation

Integrate Copilot into collaborative workflows such as pull requests, code reviews, and CI/CD pipelines

Evaluate Copilot-generated code for correctness, security, maintainability, and performance

Apply best practices for secure, compliant, and ethical Al-assisted development

Establish team guidelines and workflows that balance Al assistance with human expertise

Prepare for emerging trends in Al-driven and agentic software development

This course is designed for professional software developers, ranging from mid-level to senior, who are looking to enhance their
productivity and coding skills using Al-assisted tools. It is particularly suitable for developers who are already familiar with GitHub and
have experience in at least one programming language. While no prior experience with Al-assisted coding tools is required, a solid
foundation in software development principles and practices is expected.

Software Needed

Participants must have a laptop or desktop computer (Windows, macOS, or Linux) with a modern code editor or IDE that supports
GitHub Copilot (such as Visual Studio Code or JetBrains IDEs), reliable internet access, and the ability to install extensions and developer
tools as needed. A GitHub account with an active GitHub Copilot license (individual or organization-managed) is required, along with


https://www.logicalimagination.com
https://logicalimagination.com/courses/professional-software-development-with-github-copilot

permission to authenticate firom the IDE and access approved repositories. Participants should have Git installed and be comfortable using
a termmal/command Iine. All work should follow organizational security, privacy, and confidentiality policies, including rules related to
source code, prompts, and data shared with Al tools.

Outline
Professional Software Development with GitHub Copilot

¢ Understanding GitHub Copilot Today
o What Copilot is (and is not)
o Copilot autocomplete vs Copilot Chat
o IDE-based Copilot vs GitHub.com Copilot
o Where Copilot fits in the modern SDLC

¢ How Copilot Works
o High-level overview of large language models
o Tokens, context windows, and relevance
o Why Copilot succeeds—and why it fails
o Common misconceptions about Al-assisted coding

¢ Installation and Environment Setup

Installing and configuring Copilot in popular IDEs
o Understanding Copilot settings and controls

o Personal vs organizational configurations

o Managing access and permissions

[e]

¢ First Practical Workflows

Exploring and explaning unfamiliar code
Generating code from natural language
Asking Copilot “why” instead of just “‘what”
Evaluating suggestions critically

o O o o

¢ Context-Driven Development

How Copilot uses surrounding code and comments
Structuring files and naming to guide Copilot
Writing intent-driven comments

Working across multiple files and modules

[e]

o O o

¢ Designing and Refactoring with Copilot
o Using Copilot for safe refactoring
o Improving readability and consistency
o Reducing duplication and technical debt
o Knowing when to accept or reject suggestions
¢ Debugging and Test Generation
o Using Copilot to diagnose errors
o Generating unit and integration tests
o Fix-forward workflows: tests — failures — fixes
o Avoiding false confidence in Al-generated fixes
¢ Documentation and Knowledge Transfer
o Generating meaningful comments
o Creating README and onboarding documentation
o Using Copilot to explain architectural decisions

¢ Copilot in Collaborative Development
o Using Copilot during code reviews
o Explaining pull requests
o Improving clarity and maintamability
o Supporting onboarding and mentoring

¢ CI/CD and DevOps Workflows

Generating and explaining GitHub Actions
Debugging pipeline failures with Copilot
Improving build and deployment scripts
Using Copilot responsibly in automation

o
o
o
o



Security, Compliance, and Risk Management
o Understanding Copilot’s data boundaries
o Secure coding assistance
o Licensing and mtellectual property considerations
o When Al assistance is inappropriate or risky

Establishing Team Standards
o Creating Copilot usage guidelines
o Avoiding over-reliance and skill degradation
o Encouraging critical thinking and ownership
o Measuring productivity and quality improvements

Advanced Customization and Optimization
o IDE-specific workflows and features
o Reusable comment and prompt patterns
o Working effectively in large codebases

Legacy Code and Modernization
o Navigating undocumented or brittle systens
o Incremental refactoring strategies
o Using Copilot safely in high-risk areas

Al-Augmented Architecture and Design Thinking
o Using Copilot as a design sounding board
o Evaluating trade-offs and alternatives
o Performance and scalability considerations

The Future of Al in Software Development
Agentic development concepts

Copilot Workspace and emerging capabilities
Multi-tool Al ecosystems

Preparing teans for continuous Al evolution

o
o
o
o



	Professional Software Development with GitHub Copilot
	Prerequisites
	Details
	Software Needed
	Outline


