
Professional Software Development with GitHub Copilot
Course #: AI-301 Duration: 4 days

Prerequisites

Completion of AI Foundations for Software Developers or equivalent understanding of how AI-generated code behaves. No prior
experience with GitHub Copilot is required.

Details

This course builds on foundational understanding of AI-generated code and focuses on accelerating professional software development
workflows using GitHub Copilot. This hands-on, advanced course teaches professional software developers how to use GitHub Copilot
as a true AI pair programmer, not just an autocomplete tool. Participants learn how to integrate Copilot into real-world development
workflows, including design, refactoring, debugging, testing, documentation, and CI/CD pipelines.

Rather than focusing on isolated features, this course emphasizes judgment, context management, and production-ready usage.
Developers learn how Copilot reasons about code, how to guide it effectively across files and repositories, and how to safely collaborate
with AI in complex, real-world systems.

The course also addresses enterprise concerns such as security, compliance, intellectual property, and team standards, helping
organizations adopt Copilot responsibly while improving development velocity, code quality, and maintainability.

By the end of the course, developers will be able to confidently use Copilot as a productivity multiplier while maintaining ownership,
architectural integrity, and engineering discipline.

After attending this course, students should be able to:

Explain how GitHub Copilot works, including its capabilities, limitations, and appropriate use cases
Use Copilot Chat and IDE integrations to reason about existing codebases, generate solutions, and accelerate development tasks
Apply context-driven techniques to improve Copilot’s accuracy and relevance across multi-file projects
Use Copilot to assist with refactoring, debugging, test generation, and documentation
Integrate Copilot into collaborative workflows such as pull requests, code reviews, and CI/CD pipelines
Evaluate Copilot-generated code for correctness, security, maintainability, and performance
Apply best practices for secure, compliant, and ethical AI-assisted development
Establish team guidelines and workflows that balance AI assistance with human expertise
Prepare for emerging trends in AI-driven and agentic software development

This course is designed for professional software developers, ranging from mid-level to senior, who are looking to enhance their
productivity and coding skills using AI-assisted tools. It is particularly suitable for developers who are already familiar with GitHub and
have experience in at least one programming language. While no prior experience with AI-assisted coding tools is required, a solid
foundation in software development principles and practices is expected.

Software Needed

Participants must have a laptop or desktop computer (Windows, macOS, or Linux) with a modern code editor or IDE that supports
GitHub Copilot (such as Visual Studio Code or JetBrains IDEs), reliable internet access, and the ability to install extensions and developer
tools as needed. A GitHub account with an active GitHub Copilot license (individual or organization-managed) is required, along with

www.logicalimagination.com
800.657.1494

https://www.logicalimagination.com
https://logicalimagination.com/courses/professional-software-development-with-github-copilot

permission to authenticate from the IDE and access approved repositories. Participants should have Git installed and be comfortable using
a terminal/command line. All work should follow organizational security, privacy, and confidentiality policies, including rules related to
source code, prompts, and data shared with AI tools.

Outline

Professional Software Development with GitHub Copilot

Understanding GitHub Copilot Today
What Copilot is (and is not)
Copilot autocomplete vs Copilot Chat
IDE-based Copilot vs GitHub.com Copilot
Where Copilot fits in the modern SDLC

How Copilot Works
High-level overview of large language models
Tokens, context windows, and relevance
Why Copilot succeeds—and why it fails
Common misconceptions about AI-assisted coding

Installation and Environment Setup
Installing and configuring Copilot in popular IDEs
Understanding Copilot settings and controls
Personal vs organizational configurations
Managing access and permissions

First Practical Workflows
Exploring and explaining unfamiliar code
Generating code from natural language
Asking Copilot “why” instead of just “what”
Evaluating suggestions critically

Context-Driven Development
How Copilot uses surrounding code and comments
Structuring files and naming to guide Copilot
Writing intent-driven comments
Working across multiple files and modules

Designing and Refactoring with Copilot
Using Copilot for safe refactoring
Improving readability and consistency
Reducing duplication and technical debt
Knowing when to accept or reject suggestions

Debugging and Test Generation
Using Copilot to diagnose errors
Generating unit and integration tests
Fix-forward workflows: tests → failures → fixes
Avoiding false confidence in AI-generated fixes

Documentation and Knowledge Transfer
Generating meaningful comments
Creating README and onboarding documentation
Using Copilot to explain architectural decisions

Copilot in Collaborative Development
Using Copilot during code reviews
Explaining pull requests
Improving clarity and maintainability
Supporting onboarding and mentoring

CI/CD and DevOps Workflows
Generating and explaining GitHub Actions
Debugging pipeline failures with Copilot
Improving build and deployment scripts
Using Copilot responsibly in automation

Security, Compliance, and Risk Management
Understanding Copilot’s data boundaries
Secure coding assistance
Licensing and intellectual property considerations
When AI assistance is inappropriate or risky

Establishing Team Standards
Creating Copilot usage guidelines
Avoiding over-reliance and skill degradation
Encouraging critical thinking and ownership
Measuring productivity and quality improvements

Advanced Customization and Optimization
IDE-specific workflows and features
Reusable comment and prompt patterns
Working effectively in large codebases

Legacy Code and Modernization
Navigating undocumented or brittle systems
Incremental refactoring strategies
Using Copilot safely in high-risk areas

AI-Augmented Architecture and Design Thinking
Using Copilot as a design sounding board
Evaluating trade-offs and alternatives
Performance and scalability considerations

The Future of AI in Software Development
Agentic development concepts
Copilot Workspace and emerging capabilities
Multi-tool AI ecosystems
Preparing teams for continuous AI evolution

	Professional Software Development with GitHub Copilot
	Prerequisites
	Details
	Software Needed
	Outline

