
Designing, Building & Governing AI Assistants with Python
Course #:  AI-204  Duration:  3 days

Prerequisites

Completion of AI Foundations & Risk for IT Professionals, Designing Reliable AI Workflows & Interactions, AI Architecture & Agentic
Systems, and Building MCP-Based AI Systems with Python, or equivalent experience designing and implementing AI-enabled systems
using Python.

Details

This capstone course brings together AI architecture, workflow design, MCP-based implementation, and operational governance into a
single, end-to-end experience. Participants design and build a production-ready AI assistant that uses structured tools and backend
services, then deploy, monitor, and govern that assistant over time. Rather than focusing on demos or chatbots, the course emphasizes
assistant behavior, boundaries, reliability, accountability, and lifecycle management, ensuring AI assistants remain trustworthy and
supportable after initial deployment.

After attending this course, students should be able to:

Design AI assistants with clear roles, scope, and behavioral boundaries
Implement a tool-using AI assistant backed by MCP-based services
Manage multi-turn interactions, confirmations, and error handling
Deploy AI assistants responsibly into organizational environments
Establish ownership, governance, monitoring, and change-management practices
Evaluate assistant effectiveness and retire or evolve assistants safely

This course is designed for technical professionals responsible for delivering AI assistants that must be functional, reliable, secure, and
sustainable in real organizational environments. This course is hands-on and implementation-focused, with governance and operational
considerations integrated throughout.

Software Needed

Participants must have a laptop or desktop computer (Windows, macOS, or Linux) with Python 3.10 or later installed, a modern web
browser, and reliable internet access. The ability to create and activate Python virtual environments, install packages, and run local
development services is required. Access to an organization-approved AI assistant runtime that supports tool integration (such as an
MCP-compatible client) is required. Participants should follow all organizational security, privacy, and confidentiality guidelines when
building, testing, or discussing AI assistants.

Outline

Designing, Building & Governing AI Assistants with Python

What an AI Assistant Really Is
Assistants as persistent system actors
How assistants differ from workflows and agents

www.logicalimagination.com
800.657.1494

https://www.logicalimagination.com
https://logicalimagination.com/courses/designing,-building-&-governing-ai-assistants-with-python


Why assistant design affects trust and risk

Defining Assistant Purpose, Role, and Scope
Clarifying what the assistant is responsible for
Explicitly defining what the assistant must not do
Aligning assistant behavior with organizational needs

Designing Assistant Behavior
System instructions and role definition
Managing tone, clarity, and expectations
Avoiding misleading authority and overconfidence

Wiring the Assistant to MCP Tools
Connecting the assistant to MCP servers
Selecting appropriate tools for assistant use
Enforcing boundaries through schemas and validation

Multi-Turn Interaction Design
Clarification and confirmation patterns
Managing state across interactions
Handling incomplete or ambiguous requests

Error Handling and Safe Failure
Anticipating assistant failure modes
Designing recovery and fallback behavior
Preventing silent failures

Testing Assistant Behavior
Functional testing of assistant flows
Edge cases and misuse scenarios
Validating assistant responses and actions

Deployment Models for AI Assistants
Local, internal, and enterprise deployments
Configuration, secrets, and permissions
Managing environments and access

Observability and Monitoring
Logging assistant actions and decisions
Detecting drift and degradation
Identifying misuse and unexpected behavior

Ownership and Accountability
Defining who owns an AI assistant
Human accountability for assistant behavior
Escalation and intervention models

Governance and Risk Management
Aligning assistants with policy and compliance
Managing data access and privacy
Responding to incidents and near misses

Change Management and Versioning
Updating prompts, tools, and behavior safely
Communicating changes to users
Avoiding breaking changes

Scaling and Managing Multiple Assistants
Preventing assistant sprawl
Standardizing governance without blocking innovation
Platform approaches to assistant management

Evaluating and Retiring Assistants
Measuring usefulness and trust
Deciding when to redesign or retire an assistant
Lessons learned from real deployments


	Designing, Building & Governing AI Assistants with Python
	Prerequisites
	Details
	Software Needed
	Outline


