800.657.1494

Building MCP-Based Al Systems with Python

Course #: AI-203 Duration: 3 days

Prerequisites

Completion of Al Foundations & Risk for IT Professionals, Designing Reliable AT Workflows & Interactions, and Al Architecture &
Agentic Systers, or equivalent experience designing Al workflows and agentic system architectures. Strong working knowledge of
Python is required.

Details

This course teaches participants how to design, build, and deploy Al systens using the Model Context Protocol (MCP) and Python.
Rather than building fragile, prompt-driven demos, participants learn how to expose structured tools and backend services that Al
systerrs can use safely and reliably.

Participants implement an MCP server, define schema-driven tools, integrate data access layers, and apply best practices for validation,
error handling, and deployment. The course emphasizes structure, safety, and maintainability, enabling teams to move from
experimental Al use to production-ready systens.

After attending this course, students should be able to:

Explain the role of MCP in agentic Al systens

Build an MCP server using Python

Define schema-driven tools with clear input and output contracts
Integrate backend data sources and services safely

Apply validation, error handling, and idempotency strategies
Connect MCP servers to Al clients such as Claude Desktop
Package, version, and distribute MCP-based systens

This course is designed for technical professionals responsible for implementing Al systens that integrate safely and reliably with real
organizational data and services. This course is hands-on and implementation-focused and assumes prior experience with Python
development.

Software Needed

Participants must have a laptop or desktop computer (Windows, macOS, or Linux) with Python 3.10 or later installed, the ability to
create virtual environments, install Python packages, and run local development servers. Access to an MCP-compatible Al client (such as
Claude Desktop) is required. Full system requirements are provided prior to the course.

Outline
Building MCP-Based Al Systems with Python

¢ MCP and Agentic Architecture Fundamentals
o Why MCP exists


https://www.logicalimagination.com
https://logicalimagination.com/courses/building-mcp-based-ai-systems-with-python

o LLMs as system actors rather than chat interfaces
o How MCP changes Al system design
o Real-world examples of tool-using agents

MCP Core Components in Depth

MCP servers, tools, and resources
Schema-driven interfaces

JSON Schema vs dynamic data structures
Why explicit schemas matter in Python systems

o O o o

Structuring Data with Pydantic

Using Pydantic for schema definition and validation
Enforcing input and output contracts

Handling optional and constrained fields
Preventing runtime ambiguity

o O o o

Setting Up the MCP Server (Python)
o MCP server lifecycle
o Virtual environments and dependency management
o Minimal, maintainable project structure
o Logging and debugging strategies

Designing and Implementing MCP Tools
Tool functions vs tool classes

Mapping tools to backend capabilities
Input validation and output enforcement
Exception handling and error reporting
Idempotency in dynamic systerms

O O o0 o o

Building a Backend Domain Model
o Domain modeling in Python
o Separating business logic from MCP interfaces
o Designing for testability and reuse

Data Access and Persistence Options
o In-memory data structures
SQLite for lightweight persistence
SQLAIlchemy integration
Asynchronous data access considerations

o O ©o

Exposing CRUD Operations via MCP
Tool vs resource design decisions
Read-only vs mutating operations
Guardrails for destructive actions
Aligning CRUD exposure with governance

Prompting and Sampling for Reliable Agents
Prompt definitions as files or constants
Sampling strategies and helper functions
Managing multi-step agent workflows
Reducing variability and unintended behavior

o
o
o
o

o
o
o
o

Integrating with Al Clients
o Connecting MCP servers to Claude Desktop
o CLI execution and configuration
o Environment variables and secrets management
o Debugging runtime behavior

Testing, Safety, and Reliability
o Testing MCP tools and schemas
o Failure injection and edge cases
o Observability and logging
o Safe iteration during development

Packaging, Distribution, and Versioning
PythOIl packaging with pyproject.toml
Semantic versioning strategies

Publishing to PyPI or internal repositories
Managing breaking changes

[e]
[e]
[e]
[e]



¢ QOperational Considerations
o Deployment models
o Configuration management
o Monitoring and maintenance
o Supporting MCP-based systems over time
e Summary and Next Steps
Key implementation principles
From prototype to production
Aligning MCP systems with governance
Preparing for continued evolution of Al systens

[e]
[e]
[e]
[e]



	Building MCP-Based AI Systems with Python
	Prerequisites
	Details
	Software Needed
	Outline


